МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Департамент образования Вологодской области

Управление образования Великоустюгского муниципального округа МБОУ "Гимназия"

СОГЛАСОВАНО
Педагогическим советом
МБОУ «Гимназия»

Протокол № 1 от 30.08.2024

«Решение планиметрических задач»

9 класс

Пояснительная записка:

На протяжении веков геометрия служила источником развития не только математики, но и других наук. Законы математического мышления формировались с помощью геометрии. Многие геометрические задачи содействовали появлению новых научных направлений, и наоборот, решение многих научных проблем было получено с использованием геометрических методов. Современная наука и ее приложения немыслимы без геометрии и ее новейших разделов: топологии, дифференциальной геометрии, теории графов, компьютерной геометрии и др. Огромна роль геометрии в математическом образовании учащихся. Известен вклад, который она вносит в развитие логического мышления и пространственного воображения учеников. Курс геометрии обладает также чрезвычайно важным нравственным моментом, поскольку именно геометрия дает представление о строго установленной истине, воспитывает потребность доказывать то, что утверждается в качестве истины. Таким образом, геометрическое образование является важнейшим элементом общей культуры.

Научиться решать задачи по геометрии значительно сложнее, чем по алгебре. Это связано с обилием различных типов геометрических задач и с многообразием приемов и методов их решения.

Основная трудность при решении этих задач обычно возникает по следующим, причинам:

- планиметрический материал либо был плохо усвоен в основной школе, либо плохо сохранился в памяти;
- для решения задачи нужно знать некоторые методы и приемы решения, которые либо не рассматриваются при изучении планиметрии, либо не отрабатываются;
- в «нетипичных» задачах, в которых представлены не самые знакомые конфигурации, надо уметь применять известные факты и решать базисные задачи, которые входят как составной элемент во многие задачи.

По данным статистической обработки результатов ГИА, а также вступительных экзаменов в различные вузы планиметрические задачи вызывают трудности не только у слабых, но и у более подготовленных учащихся. Как правило, это задачи, при решении которых нужно применить небольшое число геометрических фактов из школьного курса в измененной ситуации, а вычисления не содержат длинных выкладок. Решая такую задачу, ученик должен в первую очередь проанализировать предложенную в задаче конфигурацию и увидеть те свойства, которые необходимы при решении.

Выходом из создавшегося положения может служить рассмотрение в рамках соответствующего элективного курса некоторых вопросов, которые достаточно часто встречаются в заданиях на экзаменах и которые вызывают затруднения. Предлагаемый курс «Решение планиметрических задач» является практико-ориентированным и предназначен для учащихся 9 классов. Количество учебных часов - 17.

Основное содержание курса соответствует современным тенденциям развития школьного курса геометрии, идеям дифференциации, углубления и расширения знаний учащихся. Данный курс дает учащимся возможность познакомиться с нестандартными способами решения планиметрических задач, способствует формированию и развитию таких качеств, как интеллектуальная восприимчивость и способность к усвоению новой информации, гибкость и независимость логического мышления. Поможет учащимся в подготовке к выпускным и вступительным экзаменам по геометрии, а также при выборе ими будущей профессии, связанной с математикой.

Структура курса представляет собой пять логически законченных и содержательно взаимосвязанных тем, изучение которых обеспечит системность и практическую направленность знаний и умений учеников. Разнообразный дидактический материал дает возможность отбирать дополнительные задания для учащихся различной степени подготовки. Все занятия направлены на расширение и углубление базового курса. Содержание курса можно

варьировать с учетом склонностей, интересов и уровня подготовленности учеников.

Основной тип занятий - практикум. Для наиболее успешного усвоения материала планируются различные формы работы с учащимися: лекционно-семинарские занятия, групповые, индивидуальные формы работы. Для текущего контроля на каждом занятии учащимся рекомендуется серия заданий, часть которых выполняется в классе, а часть - дома самостоятельно. Изучение данного курса заканчивается проведением либо итоговой контрольной работы, либо теста.

Ожидаемые результаты:

В результате изучения курса учащиеся должны уметь:

- точно и грамотно формулировать теоретические положения и излагать собственные рассуждения в ходе решения заданий;
 - -уверенно решать задачи на вычисление, доказательство и построение;
 - применять аппарат алгебры и тригонометрии к решению геометрических задач;
 - применять свойства геометрических преобразований к решению задач.

Место предмета в учебном плане

Согласно учебному плану образовательного учреждения на элективный курс в 9 классе отводится не менее 17часов.

Срок реализации рабочей учебной программы – ІІ полугодие 2023-2024 учебного года.

СОДЕРЖАНИЕ ПРОГРАММЫ КУРСА

Тема 1. Треугольники (4 Часа). Метрические соотношения в прямоугольном треугольнике. Свойства проекций катетов. Метрические соотношения в произвольном треугольнике. Свойства медиан, биссектрис, высот. Теоремы о площадях треугольника.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; самостоятельная работа.

Тема 2. Четырехугольники (3 **часа).** Метрические соотношения в четырехугольниках. Свойство произвольного четырехугольника, связанное с параллелограммом. Теоремы о площадях четырехугольников. Свойство биссектрисы параллелограмма и трапеции. Свойства трапеции.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач для самостоятельного решения.

Тема 3. Окружности (2 часа). Метрические соотношения между длинами хорд, отрезков касательных и секущих. Свойства дуг и хорд. Свойства вписанных углов. Углы между хордами, касательными и секущими.

Методы обучения; лекция, объяснение, выполнение тренировочных упражнений.

Формы контроля: проверка задач для самостоятельного решения; самостоятельная работа.

Тема 4. Окружности и треугольники (3 часа). Окружности, вписанные и описанные около треугольников. Окружности, вписанные и описанные около прямоугольных треугольников.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач для самостоятельного решения.

Тема 5. Окружности и четырехугольники (3 часа). Четырехугольники, вписанные и описанные около окружности. Площади четырехугольников, вписанных и описанных около окружностей. Теорема Птолемея.

Методы обучения: лекция, объяснение, выполнение тренировочных упражнений.

 Φ ормы контроля: проверка задач для самостоятельного решения; самостоятельная работа.

Решение задач по всему курсу (1 час).

Итоговый контроль (1 час).

Личностные, метапредметные, предметные результаты освоения элективного курса

Изучение математики позволяет достичь следующих результатов

в личностном направлении:

- 1) умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи, понимать смысл поставленной задачи, выстраивать аргументацию, приводить примеры и контрпримеры;
- 2) критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
- 3) представление о математической науке как сфере человеческой деятельности, об этапах ее развития, о ее значимости для развития цивилизации;
- 4) креативность мышления, инициатива, находчивость, активность при решении математических задач;
 - 5) умение контролировать процесс и результат учебной математической деятельности;
- 6) способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;

в метапредметном направлении:

- 1) первоначальные представления об идеях и о методах математики как об универсальном языке науки и техники, о средстве моделирования явлений и процессов;
- 2) умение видеть математическую задачу в контексте проблемной ситуации в других дисциплинах, в окружающей жизни;
- 3) умение находить в различных источниках информацию, необходимую для решения математических проблем, и представлять ее в понятной форме; принимать решение в условиях неполной и избыточной, точной и вероятностной информации;
- 4) умение выдвигать гипотезы при решении учебных задач и понимать необходимость их проверки;
- 6) умение применять индуктивные и дедуктивные способы рассуждений, видеть различные стратегии решения задач;
- 7) понимание сущности алгоритмических предписаний и умение действовать в соответствии с предложенным алгоритмом;
- 8) умение самостоятельно ставить цели, выбирать и создавать алгоритмы для решения учебных математических проблем;
- 9) умение планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;

в предметном направлении:

- 1) умение работать с математическим текстом (анализировать, извлекать необходимую информацию), точно и грамотно выражать свои мысли в устной и письменной речи с применением математической терминологии и символики, использовать различные языки математики, проводить классификации, логические обоснования, доказательства математических утверждений;
- 2) овладение геометрическим языком, умение использовать его для описания предметов окружающего мира; развитие пространственных представлений и изобразительных умений, приобретение навыков геометрических построений;
- 3) усвоение систематических знаний о плоских фигурах и их свойствах, а также на наглядном уровне о простейших пространственных телах, умение применять систематические знания о них для решения геометрических и практических задач;
 - 4) умение измерять длины отрезков, величины углов, использовать формулы для

нахождения периметров, площадей и объемов геометрических фигур;

5) умение применять изученные понятия, результаты, методы для решения задач практического характера и задач из смежных дисциплин с использованием при необходимости справочных материалов, калькулятора, компьютера.

Планируемые результаты освоения программы элективного курса геометрии «Решение планиметрических задач»

Личностные результаты

Личностные универсальные учебные действия

- ориентация в системе требований при обучении математике;
- позитивное, эмоциональное восприятие математических объектов, рассуждений, решений задач, рассматриваемых проблем.

Ученик получит возможность для формирования:

- выраженной устойчивой учебно-познавательной мотивации и интереса к изучению математики;
 - умение выбирать желаемый уровень математических результатов;
 - адекватной позитивной самооценки и Я-концепции.

Метапредметные образовательные результаты

Регулятивные универсальные учебные действия

Ученик научится:

- совместному с учителем целеполаганию в математической деятельности;
- анализировать условие задачи;
- действовать в соответствии с предложенным алгоритмом, составлять несложные алгоритмы вычислений и построений;
 - применять приемы самоконтроля при решении математических задач;
- оценивать правильность выполнения действия и вносить необходимые коррективы на основе имеющихся шаблонов.

Ученик получит возможность научиться:

- видеть различные стратегии решения задач, осознанно выбирать способ решения;
- основам саморегуляции в математической деятельности в форме осознанного управления своим поведением и деятельностью, направленной на достижение поставленных целей.

Коммуникативные универсальные учебные действия

Ученик научится:

- строить речевые конструкции с использованием изученной терминологии и символики, понимать смысл поставленной задачи, осуществлять перевод с естественного языка на математический и наоборот;
 - осуществлять контроль, коррекцию, оценку действий партнёра, уметь убеждать.

Ученик получит возможность научиться:

- задавать вопросы, необходимые для организации собственной деятельности взаимодействия с другими;
- устанавливать и сравнивать разные точки зрения, прежде чем принимать решения и делать выбор;
 - отображать в речи (описание, объяснение) содержание совершаемых действий.

Познавательные универсальные учебные действия

Ученик научится:

• анализировать и осмысливать тексты задач, переформулировать их условия моделировать условие с помощью схем, рисунков, таблиц, реальных предметов, строить логическую цепочку рассуждений;

- формулировать простейшие свойства изучаемых математических объектов;
- с помощью учителя анализировать, систематизировать, классифицировать изучаемые математические объекты.

Ученик получит возможность научиться:

• осуществлять выбор наиболее эффективных способов решения задач в зависимости от конкретных условий.

Предметные результаты

К концу обучения на элективном курсе обучающийся получит следующие предметные результаты:

Распознавать основные виды четырёхугольников, их элементы, пользоваться их свойствами при решении геометрических задач.

Применять свойства точки пересечения медиан треугольника (центра масс) в решении задач.

Владеть понятием средней линии треугольника и трапеции, применять их свойства при решении геометрических задач. Пользоваться теоремой Фалеса и теоремой о пропорциональных отрезках, применять их для решения практических задач.

Применять признаки подобия треугольников в решении геометрических задач.

Пользоваться теоремой Пифагора для решения геометрических и практических задач. Строить математическую модель в практических задачах, самостоятельно делать чертёж и находить соответствующие длины.

Владеть понятиями синуса, косинуса и тангенса острого угла прямоугольного треугольника. Пользоваться этими понятиями для решения практических задач.

Вычислять (различными способами) площадь треугольника и площади многоугольных фигур (пользуясь, где необходимо, калькулятором). Применять полученные умения в практических задачах.

Владеть понятиями вписанного и центрального угла, использовать теоремы о вписанных углах, углах между хордами (секущими) и угле между касательной и хордой при решении геометрических задач.

Владеть понятием описанного четырёхугольника, применять свойства описанного четырёхугольника при решении задач.

Применять полученные знания на практике — строить математические модели для задач реальной жизни и проводить соответствующие вычисления с применением подобия и тригонометрии (пользуясь, где необходимо, калькулятором).

Возможные критерии оценок.

Критерии при выставлении оценок могут быть следующими.

Оценка «отлично». Учащийся освоил теоретический материал курса, получил навыки его применения при решении конкретных задач; в работе над индивидуальными домашними заданиями учащийся продемонстрировал умение работать самостоятельно.

Оценка «хорошо». Учащийся освоил идеи и методы данного курса в такой степени, что может справиться со стандартными заданиями; выполняет домашние задания прилежно; наблюдаются определенные положительные результаты, свидетельствующие об интеллектуальном росте и о возрастании общих умений учащегося.

Оценка «удовлетворительно». Учащийся освоил наиболее простые идеи и методы решений, что позволяет ему достаточно успешно решать простые задачи.

Учебно-тематический план

<u>№</u> п/п	Наименование тем курса	Всего часов
1	Треугольники	4
2	Четырехугольники	3
3	Окружности	2
4	Окружности и треугольники	3
5	Окружности и четырехугольники	3
6	Решение задач по всему курсу	1
7	Решение планиметрических задач. Итоговый контроль	1
	Итого	17

Календарно – тематическое планирование

№	Содержание материала	Количество часов	Дата проведения		
п\п	Содержание материала		План	Факт	
	1. Треугольники (4 ч).	Тасов		Paki	
1.	Прямоугольный треугольник.	1			
	Основные понятия и свойства.				
2.	Произвольный треугольник.				
	Метрические соотношения в	1			
	треугольнике.				
3.	Произвольный треугольник.				
	Метрические соотношения в	1			
	треугольнике.				
4.	Произвольный треугольник.				
	Метрические соотношения в	1			
	треугольнике.				
2. Четырехугольники. (3ч)					
5.	Параллелограмм.	1			
6.	Трапеция.	1			
7.	Трапеция.	1			
	3. Окружности (2ч).				
8.	Свойства касательных, хорд и	1			
	секущих.				
9.	Свойства касательных, хорд и	1			
	секущих.	1			
4. Окружности и треугольники. (3ч)					
10.	Окружность, вписанная в треугольник.	1			

11.	Окружность, описанная около треугольника.	1	
12.	Окружность, описанная около треугольника.	1	
5. O	кружности и четырехугольники (3ч).		
13.	Окружность, вписанная в ромб.	1	
14.	Окружность, вписанная в ромб.	1	
15.	Окружность, вписанная в ромб.	1	
16.	Решение задач по всему курсу.	1	
17.	Решение планиметрических задач. Зачётная работа.	1	

ЗАЧЁТНАЯ РАБОТА

Вариант 1

- 1. На окружности радиуса R и последовательно отмечены точки A, B, C и D так, что величины дуг AB и BC равны соответственно 50° и 80°, а диагонали четырехугольника ABCD равны между собой. Найдите длину наибольшей стороны четырехугольника.
- 2. Отрезок CH высота прямоугольного треугольника ABC (<C =90°). HL = 3HK, где HL и HK- биссектрисы треугольников BCH и ACH соответственно, AB =2 $\sqrt{5}$. Найдите площадь треугольника ABC.
- 3. На двух сторонах прямого угла с вершиной М выбраны точки D и K соответственно так, что MO : MK = 7/. На биссектрисе угла DMK взята точка E, равноудаленная от D и K. Определите длину DK, если ME = 4.
- 4. Отрезок СМ- биссектриса треугольника ABC. Точки К и P основания перпендикуляров, опущенных из точки M на стороны треугольника AC и BC соответственно. BC = $2\$ AC, <BCA= 60^{0} ,MK=2 . Найдите отношение площадей треугольников MCA и BMC и длину стороны AB.
 - 5. Трапецию можно вписать в круг, радиус которого в $(2\3)\sqrt{7}$ раз больше радиуса круга, вписанного в эту же трапецию. Найдите все углы данной трапеции.

Вариант 2

- 1. На окружности радиуса г последовательно отмечены точки K, M, N и Q, так, что величины дуг KM и MN равны соответственно 40° и 100°, а хорды KM и MQ пересекаются под углом 70°. Найдите длину наибольшей стороны четырехугольника KMHQ.
- 2.В прямоугольном треугольнике ABC (< C=90°) проведена высота CH. Отрезки AM и CP медианы треугольников ACH и HCB соответственно, причем 3AM= 4CP. Найдите радиус окружности, описанной около треугольника ABC, если его площадь равна 96.
- 2. Угол ABC прямой, AB = 4, BC=3. Найдите расстояние от B до точки K, лежащей на биссектрисе прямого угла, если K равноудалена от A и C.
- 3. В остроугольном треугольнике ABC высоты $AA_1 = 2$, $CC_1 = 4$, BN биссектриса треугольника, $AH = 5 \ 3$. Найдите длину NC и площадь треугольника ABC.
- 5. В прямоугольную трапецию вписана окружность. Точки касания этой окружности со сторонами трапеции являются вершинами четырехугольника, площадь которого в 4 раза меньше площади трапеции. Чему равен наименьший угол трапеции?

Литература:

- 1. Геометрия 7 9: Учеб. для общеобразоват. учреждений/ Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. М.: Просвещение, 2017.
 - 2. Геометрия 7 9: Учеб. для общеобразоват. учреждений/ Погорелов А.В. М.: Просвещение
 - 3. Геометрия в таблицах. Л.И. Звавич и др. Дрофа. 2002
 - 4. Краткий справочник школьника 5-11классы Дрофа .-1997
 - 5. . Геометрия в таблицах. А.Н. Роганин и др. Дрофа. 2020